20 Fundamental Objects

20.1 Object Objects

20.1.1 The Object Constructor

The Object constructor:

  • is %Object%.
  • is the initial value of the "Object" property of the global object.
  • creates a new ordinary object when called as a constructor.
  • performs a type conversion when called as a function rather than as a constructor.
  • may be used as the value of an extends clause of a class definition.

20.1.1.1 Object ( [ value ] )

This function performs the following steps when called:

  1. If NewTarget is neither undefined nor the active function object, then
    1. Return ? OrdinaryCreateFromConstructor(NewTarget, "%Object.prototype%").
  2. If value is either undefined or null, return OrdinaryObjectCreate(%Object.prototype%).
  3. Return ! ToObject(value).

The "length" property of this function is 1𝔽.

20.1.2 Properties of the Object Constructor

The Object constructor:

  • has a [[Prototype]] internal slot whose value is %Function.prototype%.
  • has a "length" property.
  • has the following additional properties:

20.1.2.1 Object.assign ( target, ...sources )

This function copies the values of all of the enumerable own properties from one or more source objects to a target object.

It performs the following steps when called:

  1. Let to be ? ToObject(target).
  2. If only one argument was passed, return to.
  3. For each element nextSource of sources, do
    1. If nextSource is neither undefined nor null, then
      1. Let from be ! ToObject(nextSource).
      2. Let keys be ? from.[[OwnPropertyKeys]]().
      3. For each element nextKey of keys, do
        1. Let desc be ? from.[[GetOwnProperty]](nextKey).
        2. If desc is not undefined and desc.[[Enumerable]] is true, then
          1. Let propValue be ? Get(from, nextKey).
          2. Perform ? Set(to, nextKey, propValue, true).
  4. Return to.

The "length" property of this function is 2𝔽.

20.1.2.2 Object.create ( O, Properties )

This function creates a new object with a specified prototype.

It performs the following steps when called:

  1. If O is not an Object and O is not null, throw a TypeError exception.
  2. Let obj be OrdinaryObjectCreate(O).
  3. If Properties is not undefined, then
    1. Return ? ObjectDefineProperties(obj, Properties).
  4. Return obj.

20.1.2.3 Object.defineProperties ( O, Properties )

This function adds own properties and/or updates the attributes of existing own properties of an object.

It performs the following steps when called:

  1. If O is not an Object, throw a TypeError exception.
  2. Return ? ObjectDefineProperties(O, Properties).

20.1.2.3.1 ObjectDefineProperties ( O, Properties )

The abstract operation ObjectDefineProperties takes arguments O (an Object) and Properties (an ECMAScript language value) and returns either a normal completion containing an Object or a throw completion. It performs the following steps when called:

  1. Let props be ? ToObject(Properties).
  2. Let keys be ? props.[[OwnPropertyKeys]]().
  3. Let descriptors be a new empty List.
  4. For each element nextKey of keys, do
    1. Let propDesc be ? props.[[GetOwnProperty]](nextKey).
    2. If propDesc is not undefined and propDesc.[[Enumerable]] is true, then
      1. Let descObj be ? Get(props, nextKey).
      2. Let desc be ? ToPropertyDescriptor(descObj).
      3. Append the pair (a two element List) consisting of nextKey and desc to the end of descriptors.
  5. For each element pair of descriptors, do
    1. Let P be the first element of pair.
    2. Let desc be the second element of pair.
    3. Perform ? DefinePropertyOrThrow(O, P, desc).
  6. Return O.

20.1.2.4 Object.defineProperty ( O, P, Attributes )

This function adds an own property and/or updates the attributes of an existing own property of an object.

It performs the following steps when called:

  1. If O is not an Object, throw a TypeError exception.
  2. Let key be ? ToPropertyKey(P).
  3. Let desc be ? ToPropertyDescriptor(Attributes).
  4. Perform ? DefinePropertyOrThrow(O, key, desc).
  5. Return O.

20.1.2.5 Object.entries ( O )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let entryList be ? EnumerableOwnProperties(obj, key+value).
  3. Return CreateArrayFromList(entryList).

20.1.2.6 Object.freeze ( O )

This function performs the following steps when called:

  1. If O is not an Object, return O.
  2. Let status be ? SetIntegrityLevel(O, frozen).
  3. If status is false, throw a TypeError exception.
  4. Return O.

20.1.2.7 Object.fromEntries ( iterable )

This function performs the following steps when called:

  1. Perform ? RequireObjectCoercible(iterable).
  2. Let obj be OrdinaryObjectCreate(%Object.prototype%).
  3. Assert: obj is an extensible ordinary object with no own properties.
  4. Let closure be a new Abstract Closure with parameters (key, value) that captures obj and performs the following steps when called:
    1. Let propertyKey be ? ToPropertyKey(key).
    2. Perform ! CreateDataPropertyOrThrow(obj, propertyKey, value).
    3. Return undefined.
  5. Let adder be CreateBuiltinFunction(closure, 2, "", « »).
  6. Return ? AddEntriesFromIterable(obj, iterable, adder).
Note
The function created for adder is never directly accessible to ECMAScript code.

20.1.2.8 Object.getOwnPropertyDescriptor ( O, P )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let key be ? ToPropertyKey(P).
  3. Let desc be ? obj.[[GetOwnProperty]](key).
  4. Return FromPropertyDescriptor(desc).

20.1.2.9 Object.getOwnPropertyDescriptors ( O )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let ownKeys be ? obj.[[OwnPropertyKeys]]().
  3. Let descriptors be OrdinaryObjectCreate(%Object.prototype%).
  4. For each element key of ownKeys, do
    1. Let desc be ? obj.[[GetOwnProperty]](key).
    2. Let descriptor be FromPropertyDescriptor(desc).
    3. If descriptor is not undefined, perform ! CreateDataPropertyOrThrow(descriptors, key, descriptor).
  5. Return descriptors.

20.1.2.10 Object.getOwnPropertyNames ( O )

This function performs the following steps when called:

  1. Return CreateArrayFromList(? GetOwnPropertyKeys(O, string)).

20.1.2.11 Object.getOwnPropertySymbols ( O )

This function performs the following steps when called:

  1. Return CreateArrayFromList(? GetOwnPropertyKeys(O, symbol)).

20.1.2.11.1 GetOwnPropertyKeys ( O, type )

The abstract operation GetOwnPropertyKeys takes arguments O (an ECMAScript language value) and type (string or symbol) and returns either a normal completion containing a List of property keys or a throw completion. It performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let keys be ? obj.[[OwnPropertyKeys]]().
  3. Let nameList be a new empty List.
  4. For each element nextKey of keys, do
    1. If nextKey is a Symbol and type is symbol, or if nextKey is a String and type is string, then
      1. Append nextKey to nameList.
  5. Return nameList.

20.1.2.12 Object.getPrototypeOf ( O )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Return ? obj.[[GetPrototypeOf]]().

20.1.2.13 Object.hasOwn ( O, P )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let key be ? ToPropertyKey(P).
  3. Return ? HasOwnProperty(obj, key).

20.1.2.14 Object.is ( value1, value2 )

This function performs the following steps when called:

  1. Return SameValue(value1, value2).

20.1.2.15 Object.isExtensible ( O )

This function performs the following steps when called:

  1. If O is not an Object, return false.
  2. Return ? IsExtensible(O).

20.1.2.16 Object.isFrozen ( O )

This function performs the following steps when called:

  1. If O is not an Object, return true.
  2. Return ? TestIntegrityLevel(O, frozen).

20.1.2.17 Object.isSealed ( O )

This function performs the following steps when called:

  1. If O is not an Object, return true.
  2. Return ? TestIntegrityLevel(O, sealed).

20.1.2.18 Object.keys ( O )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let keyList be ? EnumerableOwnProperties(obj, key).
  3. Return CreateArrayFromList(keyList).

20.1.2.19 Object.preventExtensions ( O )

This function performs the following steps when called:

  1. If O is not an Object, return O.
  2. Let status be ? O.[[PreventExtensions]]().
  3. If status is false, throw a TypeError exception.
  4. Return O.

20.1.2.20 Object.prototype

The initial value of Object.prototype is the Object prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.1.2.21 Object.seal ( O )

This function performs the following steps when called:

  1. If O is not an Object, return O.
  2. Let status be ? SetIntegrityLevel(O, sealed).
  3. If status is false, throw a TypeError exception.
  4. Return O.

20.1.2.22 Object.setPrototypeOf ( O, proto )

This function performs the following steps when called:

  1. Set O to ? RequireObjectCoercible(O).
  2. If proto is not an Object and proto is not null, throw a TypeError exception.
  3. If O is not an Object, return O.
  4. Let status be ? O.[[SetPrototypeOf]](proto).
  5. If status is false, throw a TypeError exception.
  6. Return O.

20.1.2.23 Object.values ( O )

This function performs the following steps when called:

  1. Let obj be ? ToObject(O).
  2. Let valueList be ? EnumerableOwnProperties(obj, value).
  3. Return CreateArrayFromList(valueList).

20.1.3 Properties of the Object Prototype Object

The Object prototype object:

  • is %Object.prototype%.
  • has an [[Extensible]] internal slot whose value is true.
  • has the internal methods defined for ordinary objects, except for the [[SetPrototypeOf]] method, which is as defined in 10.4.7.1. (Thus, it is an immutable prototype exotic object.)
  • has a [[Prototype]] internal slot whose value is null.

20.1.3.1 Object.prototype.constructor

The initial value of Object.prototype.constructor is %Object%.

20.1.3.2 Object.prototype.hasOwnProperty ( V )

This method performs the following steps when called:

  1. Let P be ? ToPropertyKey(V).
  2. Let O be ? ToObject(this value).
  3. Return ? HasOwnProperty(O, P).
Note

The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1 in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

20.1.3.3 Object.prototype.isPrototypeOf ( V )

This method performs the following steps when called:

  1. If V is not an Object, return false.
  2. Let O be ? ToObject(this value).
  3. Repeat,
    1. Set V to ? V.[[GetPrototypeOf]]().
    2. If V is null, return false.
    3. If SameValue(O, V) is true, return true.
Note

The ordering of steps 1 and 2 preserves the behaviour specified by previous editions of this specification for the case where V is not an object and the this value is undefined or null.

20.1.3.4 Object.prototype.propertyIsEnumerable ( V )

This method performs the following steps when called:

  1. Let P be ? ToPropertyKey(V).
  2. Let O be ? ToObject(this value).
  3. Let desc be ? O.[[GetOwnProperty]](P).
  4. If desc is undefined, return false.
  5. Return desc.[[Enumerable]].
Note 1

This method does not consider objects in the prototype chain.

Note 2

The ordering of steps 1 and 2 is chosen to ensure that any exception that would have been thrown by step 1 in previous editions of this specification will continue to be thrown even if the this value is undefined or null.

20.1.3.5 Object.prototype.toLocaleString ( [ reserved1 [ , reserved2 ] ] )

This method performs the following steps when called:

  1. Let O be the this value.
  2. Return ? Invoke(O, "toString").

The optional parameters to this method are not used but are intended to correspond to the parameter pattern used by ECMA-402 toLocaleString methods. Implementations that do not include ECMA-402 support must not use those parameter positions for other purposes.

Note 1

This method provides a generic toLocaleString implementation for objects that have no locale-sensitive toString behaviour. Array, Number, Date, and %TypedArray% provide their own locale-sensitive toLocaleString methods.

Note 2

ECMA-402 intentionally does not provide an alternative to this default implementation.

20.1.3.6 Object.prototype.toString ( )

This method performs the following steps when called:

  1. If the this value is undefined, return "[object Undefined]".
  2. If the this value is null, return "[object Null]".
  3. Let O be ! ToObject(this value).
  4. Let isArray be ? IsArray(O).
  5. If isArray is true, let builtinTag be "Array".
  6. Else if O has a [[ParameterMap]] internal slot, let builtinTag be "Arguments".
  7. Else if O has a [[Call]] internal method, let builtinTag be "Function".
  8. Else if O has an [[ErrorData]] internal slot, let builtinTag be "Error".
  9. Else if O has a [[BooleanData]] internal slot, let builtinTag be "Boolean".
  10. Else if O has a [[NumberData]] internal slot, let builtinTag be "Number".
  11. Else if O has a [[StringData]] internal slot, let builtinTag be "String".
  12. Else if O has a [[DateValue]] internal slot, let builtinTag be "Date".
  13. Else if O has a [[RegExpMatcher]] internal slot, let builtinTag be "RegExp".
  14. Else, let builtinTag be "Object".
  15. Let tag be ? Get(O, @@toStringTag).
  16. If tag is not a String, set tag to builtinTag.
  17. Return the string-concatenation of "[object ", tag, and "]".
Note

Historically, this method was occasionally used to access the String value of the [[Class]] internal slot that was used in previous editions of this specification as a nominal type tag for various built-in objects. The above definition of toString preserves compatibility for legacy code that uses toString as a test for those specific kinds of built-in objects. It does not provide a reliable type testing mechanism for other kinds of built-in or program defined objects. In addition, programs can use @@toStringTag in ways that will invalidate the reliability of such legacy type tests.

20.1.3.7 Object.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? ToObject(this value).

20.1.3.8 Object.prototype.__proto__

Object.prototype.__proto__ is an accessor property with attributes { [[Enumerable]]: false, [[Configurable]]: true }. The [[Get]] and [[Set]] attributes are defined as follows:

20.1.3.8.1 get Object.prototype.__proto__

The value of the [[Get]] attribute is a built-in function that requires no arguments. It performs the following steps when called:

  1. Let O be ? ToObject(this value).
  2. Return ? O.[[GetPrototypeOf]]().

20.1.3.8.2 set Object.prototype.__proto__

The value of the [[Set]] attribute is a built-in function that takes an argument proto. It performs the following steps when called:

  1. Let O be ? RequireObjectCoercible(this value).
  2. If proto is not an Object and proto is not null, return undefined.
  3. If O is not an Object, return undefined.
  4. Let status be ? O.[[SetPrototypeOf]](proto).
  5. If status is false, throw a TypeError exception.
  6. Return undefined.

20.1.3.9 Legacy Object.prototype Accessor Methods

20.1.3.9.1 Object.prototype.__defineGetter__ ( P, getter )

This method performs the following steps when called:

  1. Let O be ? ToObject(this value).
  2. If IsCallable(getter) is false, throw a TypeError exception.
  3. Let desc be PropertyDescriptor { [[Get]]: getter, [[Enumerable]]: true, [[Configurable]]: true }.
  4. Let key be ? ToPropertyKey(P).
  5. Perform ? DefinePropertyOrThrow(O, key, desc).
  6. Return undefined.

20.1.3.9.2 Object.prototype.__defineSetter__ ( P, setter )

This method performs the following steps when called:

  1. Let O be ? ToObject(this value).
  2. If IsCallable(setter) is false, throw a TypeError exception.
  3. Let desc be PropertyDescriptor { [[Set]]: setter, [[Enumerable]]: true, [[Configurable]]: true }.
  4. Let key be ? ToPropertyKey(P).
  5. Perform ? DefinePropertyOrThrow(O, key, desc).
  6. Return undefined.

20.1.3.9.3 Object.prototype.__lookupGetter__ ( P )

This method performs the following steps when called:

  1. Let O be ? ToObject(this value).
  2. Let key be ? ToPropertyKey(P).
  3. Repeat,
    1. Let desc be ? O.[[GetOwnProperty]](key).
    2. If desc is not undefined, then
      1. If IsAccessorDescriptor(desc) is true, return desc.[[Get]].
      2. Return undefined.
    3. Set O to ? O.[[GetPrototypeOf]]().
    4. If O is null, return undefined.

20.1.3.9.4 Object.prototype.__lookupSetter__ ( P )

This method performs the following steps when called:

  1. Let O be ? ToObject(this value).
  2. Let key be ? ToPropertyKey(P).
  3. Repeat,
    1. Let desc be ? O.[[GetOwnProperty]](key).
    2. If desc is not undefined, then
      1. If IsAccessorDescriptor(desc) is true, return desc.[[Set]].
      2. Return undefined.
    3. Set O to ? O.[[GetPrototypeOf]]().
    4. If O is null, return undefined.

20.1.4 Properties of Object Instances

Object instances have no special properties beyond those inherited from the Object prototype object.

20.2 Function Objects

20.2.1 The Function Constructor

The Function constructor:

  • is %Function%.
  • is the initial value of the "Function" property of the global object.
  • creates and initializes a new function object when called as a function rather than as a constructor. Thus the function call Function(…) is equivalent to the object creation expression new Function(…) with the same arguments.
  • may be used as the value of an extends clause of a class definition. Subclass constructors that intend to inherit the specified Function behaviour must include a super call to the Function constructor to create and initialize a subclass instance with the internal slots necessary for built-in function behaviour. All ECMAScript syntactic forms for defining function objects create instances of Function. There is no syntactic means to create instances of Function subclasses except for the built-in GeneratorFunction, AsyncFunction, and AsyncGeneratorFunction subclasses.

20.2.1.1 Function ( ...parameterArgs, bodyArg )

The last argument (if any) specifies the body (executable code) of a function; any preceding arguments specify formal parameters.

This function performs the following steps when called:

  1. Let C be the active function object.
  2. If bodyArg is not present, set bodyArg to the empty String.
  3. Return ? CreateDynamicFunction(C, NewTarget, normal, parameterArgs, bodyArg).
Note

It is permissible but not necessary to have one argument for each formal parameter to be specified. For example, all three of the following expressions produce the same result:

new Function("a", "b", "c", "return a+b+c")
new Function("a, b, c", "return a+b+c")
new Function("a,b", "c", "return a+b+c")

20.2.1.1.1 CreateDynamicFunction ( constructor, newTarget, kind, parameterArgs, bodyArg )

The abstract operation CreateDynamicFunction takes arguments constructor (a constructor), newTarget (a constructor), kind (normal, generator, async, or asyncGenerator), parameterArgs (a List of ECMAScript language values), and bodyArg (an ECMAScript language value) and returns either a normal completion containing a function object or a throw completion. constructor is the constructor function that is performing this action. newTarget is the constructor that new was initially applied to. parameterArgs and bodyArg reflect the argument values that were passed to constructor. It performs the following steps when called:

  1. Let currentRealm be the current Realm Record.
  2. Perform ? HostEnsureCanCompileStrings(currentRealm).
  3. If newTarget is undefined, set newTarget to constructor.
  4. If kind is normal, then
    1. Let prefix be "function".
    2. Let exprSym be the grammar symbol FunctionExpression.
    3. Let bodySym be the grammar symbol FunctionBody[~Yield, ~Await].
    4. Let parameterSym be the grammar symbol FormalParameters[~Yield, ~Await].
    5. Let fallbackProto be "%Function.prototype%".
  5. Else if kind is generator, then
    1. Let prefix be "function*".
    2. Let exprSym be the grammar symbol GeneratorExpression.
    3. Let bodySym be the grammar symbol GeneratorBody.
    4. Let parameterSym be the grammar symbol FormalParameters[+Yield, ~Await].
    5. Let fallbackProto be "%GeneratorFunction.prototype%".
  6. Else if kind is async, then
    1. Let prefix be "async function".
    2. Let exprSym be the grammar symbol AsyncFunctionExpression.
    3. Let bodySym be the grammar symbol AsyncFunctionBody.
    4. Let parameterSym be the grammar symbol FormalParameters[~Yield, +Await].
    5. Let fallbackProto be "%AsyncFunction.prototype%".
  7. Else,
    1. Assert: kind is asyncGenerator.
    2. Let prefix be "async function*".
    3. Let exprSym be the grammar symbol AsyncGeneratorExpression.
    4. Let bodySym be the grammar symbol AsyncGeneratorBody.
    5. Let parameterSym be the grammar symbol FormalParameters[+Yield, +Await].
    6. Let fallbackProto be "%AsyncGeneratorFunction.prototype%".
  8. Let argCount be the number of elements in parameterArgs.
  9. Let P be the empty String.
  10. If argCount > 0, then
    1. Let firstArg be parameterArgs[0].
    2. Set P to ? ToString(firstArg).
    3. Let k be 1.
    4. Repeat, while k < argCount,
      1. Let nextArg be parameterArgs[k].
      2. Let nextArgString be ? ToString(nextArg).
      3. Set P to the string-concatenation of P, "," (a comma), and nextArgString.
      4. Set k to k + 1.
  11. Let bodyString be the string-concatenation of 0x000A (LINE FEED), ? ToString(bodyArg), and 0x000A (LINE FEED).
  12. Let sourceString be the string-concatenation of prefix, " anonymous(", P, 0x000A (LINE FEED), ") {", bodyString, and "}".
  13. Let sourceText be StringToCodePoints(sourceString).
  14. Let parameters be ParseText(StringToCodePoints(P), parameterSym).
  15. If parameters is a List of errors, throw a SyntaxError exception.
  16. Let body be ParseText(StringToCodePoints(bodyString), bodySym).
  17. If body is a List of errors, throw a SyntaxError exception.
  18. NOTE: The parameters and body are parsed separately to ensure that each is valid alone. For example, new Function("/*", "*/ ) {") does not evaluate to a function.
  19. NOTE: If this step is reached, sourceText must have the syntax of exprSym (although the reverse implication does not hold). The purpose of the next two steps is to enforce any Early Error rules which apply to exprSym directly.
  20. Let expr be ParseText(sourceText, exprSym).
  21. If expr is a List of errors, throw a SyntaxError exception.
  22. Let proto be ? GetPrototypeFromConstructor(newTarget, fallbackProto).
  23. Let realmF be the current Realm Record.
  24. Let env be realmF.[[GlobalEnv]].
  25. Let privateEnv be null.
  26. Let F be OrdinaryFunctionCreate(proto, sourceText, parameters, body, non-lexical-this, env, privateEnv).
  27. Perform SetFunctionName(F, "anonymous").
  28. If kind is generator, then
    1. Let prototype be OrdinaryObjectCreate(%GeneratorFunction.prototype.prototype%).
    2. Perform ! DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
  29. Else if kind is asyncGenerator, then
    1. Let prototype be OrdinaryObjectCreate(%AsyncGeneratorFunction.prototype.prototype%).
    2. Perform ! DefinePropertyOrThrow(F, "prototype", PropertyDescriptor { [[Value]]: prototype, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }).
  30. Else if kind is normal, perform MakeConstructor(F).
  31. NOTE: Functions whose kind is async are not constructible and do not have a [[Construct]] internal method or a "prototype" property.
  32. Return F.
Note

CreateDynamicFunction defines a "prototype" property on any function it creates whose kind is not async to provide for the possibility that the function will be used as a constructor.

20.2.2 Properties of the Function Constructor

The Function constructor:

20.2.2.1 Function.length

This is a data property with a value of 1. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

20.2.2.2 Function.prototype

The value of Function.prototype is the Function prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.2.3 Properties of the Function Prototype Object

The Function prototype object:

  • is %Function.prototype%.
  • is itself a built-in function object.
  • accepts any arguments and returns undefined when invoked.
  • does not have a [[Construct]] internal method; it cannot be used as a constructor with the new operator.
  • has a [[Prototype]] internal slot whose value is %Object.prototype%.
  • does not have a "prototype" property.
  • has a "length" property whose value is +0𝔽.
  • has a "name" property whose value is the empty String.
Note

The Function prototype object is specified to be a function object to ensure compatibility with ECMAScript code that was created prior to the ECMAScript 2015 specification.

20.2.3.1 Function.prototype.apply ( thisArg, argArray )

This method performs the following steps when called:

  1. Let func be the this value.
  2. If IsCallable(func) is false, throw a TypeError exception.
  3. If argArray is either undefined or null, then
    1. Perform PrepareForTailCall().
    2. Return ? Call(func, thisArg).
  4. Let argList be ? CreateListFromArrayLike(argArray).
  5. Perform PrepareForTailCall().
  6. Return ? Call(func, thisArg, argList).
Note 1

The thisArg value is passed without modification as the this value. This is a change from Edition 3, where an undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is passed as the this value. Even though the thisArg is passed without modification, non-strict functions still perform these transformations upon entry to the function.

Note 2

If func is either an arrow function or a bound function exotic object, then the thisArg will be ignored by the function [[Call]] in step 6.

20.2.3.2 Function.prototype.bind ( thisArg, ...args )

This method performs the following steps when called:

  1. Let Target be the this value.
  2. If IsCallable(Target) is false, throw a TypeError exception.
  3. Let F be ? BoundFunctionCreate(Target, thisArg, args).
  4. Let L be 0.
  5. Let targetHasLength be ? HasOwnProperty(Target, "length").
  6. If targetHasLength is true, then
    1. Let targetLen be ? Get(Target, "length").
    2. If targetLen is a Number, then
      1. If targetLen is +∞𝔽, set L to +∞.
      2. Else if targetLen is -∞𝔽, set L to 0.
      3. Else,
        1. Let targetLenAsInt be ! ToIntegerOrInfinity(targetLen).
        2. Assert: targetLenAsInt is finite.
        3. Let argCount be the number of elements in args.
        4. Set L to max(targetLenAsInt - argCount, 0).
  7. Perform SetFunctionLength(F, L).
  8. Let targetName be ? Get(Target, "name").
  9. If targetName is not a String, set targetName to the empty String.
  10. Perform SetFunctionName(F, targetName, "bound").
  11. Return F.
Note 1

Function objects created using Function.prototype.bind are exotic objects. They also do not have a "prototype" property.

Note 2

If Target is either an arrow function or a bound function exotic object, then the thisArg passed to this method will not be used by subsequent calls to F.

20.2.3.3 Function.prototype.call ( thisArg, ...args )

This method performs the following steps when called:

  1. Let func be the this value.
  2. If IsCallable(func) is false, throw a TypeError exception.
  3. Perform PrepareForTailCall().
  4. Return ? Call(func, thisArg, args).
Note 1

The thisArg value is passed without modification as the this value. This is a change from Edition 3, where an undefined or null thisArg is replaced with the global object and ToObject is applied to all other values and that result is passed as the this value. Even though the thisArg is passed without modification, non-strict functions still perform these transformations upon entry to the function.

Note 2

If func is either an arrow function or a bound function exotic object, then the thisArg will be ignored by the function [[Call]] in step 4.

20.2.3.4 Function.prototype.constructor

The initial value of Function.prototype.constructor is %Function%.

20.2.3.5 Function.prototype.toString ( )

This method performs the following steps when called:

  1. Let func be the this value.
  2. If func is an Object, func has a [[SourceText]] internal slot, func.[[SourceText]] is a sequence of Unicode code points, and HostHasSourceTextAvailable(func) is true, then
    1. Return CodePointsToString(func.[[SourceText]]).
  3. If func is a built-in function object, return an implementation-defined String source code representation of func. The representation must have the syntax of a NativeFunction. Additionally, if func has an [[InitialName]] internal slot and func.[[InitialName]] is a String, the portion of the returned String that would be matched by NativeFunctionAccessoropt PropertyName must be the value of func.[[InitialName]].
  4. If func is an Object and IsCallable(func) is true, return an implementation-defined String source code representation of func. The representation must have the syntax of a NativeFunction.
  5. Throw a TypeError exception.
NativeFunction : function NativeFunctionAccessoropt PropertyName[~Yield, ~Await]opt ( FormalParameters[~Yield, ~Await] ) { [ native code ] } NativeFunctionAccessor : get set

20.2.3.6 Function.prototype [ @@hasInstance ] ( V )

This method performs the following steps when called:

  1. Let F be the this value.
  2. Return ? OrdinaryHasInstance(F, V).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

Note

This is the default implementation of @@hasInstance that most functions inherit. @@hasInstance is called by the instanceof operator to determine whether a value is an instance of a specific constructor. An expression such as

v instanceof F

evaluates as

F[@@hasInstance](v)

A constructor function can control which objects are recognized as its instances by instanceof by exposing a different @@hasInstance method on the function.

This property is non-writable and non-configurable to prevent tampering that could be used to globally expose the target function of a bound function.

The value of the "name" property of this method is "[Symbol.hasInstance]".

20.2.4 Function Instances

Every Function instance is an ECMAScript function object and has the internal slots listed in Table 30. Function objects created using the Function.prototype.bind method (20.2.3.2) have the internal slots listed in Table 31.

Function instances have the following properties:

20.2.4.1 length

The value of the "length" property is an integral Number that indicates the typical number of arguments expected by the function. However, the language permits the function to be invoked with some other number of arguments. The behaviour of a function when invoked on a number of arguments other than the number specified by its "length" property depends on the function. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

20.2.4.2 name

The value of the "name" property is a String that is descriptive of the function. The name has no semantic significance but is typically a variable or property name that is used to refer to the function at its point of definition in ECMAScript source text. This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

Anonymous functions objects that do not have a contextual name associated with them by this specification use the empty String as the value of the "name" property.

20.2.4.3 prototype

Function instances that can be used as a constructor have a "prototype" property. Whenever such a Function instance is created another ordinary object is also created and is the initial value of the function's "prototype" property. Unless otherwise specified, the value of the "prototype" property is used to initialize the [[Prototype]] internal slot of the object created when that function is invoked as a constructor.

This property has the attributes { [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: false }.

Note

Function objects created using Function.prototype.bind, or by evaluating a MethodDefinition (that is not a GeneratorMethod or AsyncGeneratorMethod) or an ArrowFunction do not have a "prototype" property.

20.2.5 HostHasSourceTextAvailable ( func )

The host-defined abstract operation HostHasSourceTextAvailable takes argument func (a function object) and returns a Boolean. It allows host environments to prevent the source text from being provided for func.

An implementation of HostHasSourceTextAvailable must conform to the following requirements:

  • It must be deterministic with respect to its parameters. Each time it is called with a specific func as its argument, it must return the same result.

The default implementation of HostHasSourceTextAvailable is to return true.

20.3 Boolean Objects

20.3.1 The Boolean Constructor

The Boolean constructor:

  • is %Boolean%.
  • is the initial value of the "Boolean" property of the global object.
  • creates and initializes a new Boolean object when called as a constructor.
  • performs a type conversion when called as a function rather than as a constructor.
  • may be used as the value of an extends clause of a class definition. Subclass constructors that intend to inherit the specified Boolean behaviour must include a super call to the Boolean constructor to create and initialize the subclass instance with a [[BooleanData]] internal slot.

20.3.1.1 Boolean ( value )

This function performs the following steps when called:

  1. Let b be ToBoolean(value).
  2. If NewTarget is undefined, return b.
  3. Let O be ? OrdinaryCreateFromConstructor(NewTarget, "%Boolean.prototype%", « [[BooleanData]] »).
  4. Set O.[[BooleanData]] to b.
  5. Return O.

20.3.2 Properties of the Boolean Constructor

The Boolean constructor:

  • has a [[Prototype]] internal slot whose value is %Function.prototype%.
  • has the following properties:

20.3.2.1 Boolean.prototype

The initial value of Boolean.prototype is the Boolean prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.3.3 Properties of the Boolean Prototype Object

The Boolean prototype object:

  • is %Boolean.prototype%.
  • is an ordinary object.
  • is itself a Boolean object; it has a [[BooleanData]] internal slot with the value false.
  • has a [[Prototype]] internal slot whose value is %Object.prototype%.

The abstract operation thisBooleanValue takes argument value. It performs the following steps when called:

  1. If value is a Boolean, return value.
  2. If value is an Object and value has a [[BooleanData]] internal slot, then
    1. Let b be value.[[BooleanData]].
    2. Assert: b is a Boolean.
    3. Return b.
  3. Throw a TypeError exception.

20.3.3.1 Boolean.prototype.constructor

The initial value of Boolean.prototype.constructor is %Boolean%.

20.3.3.2 Boolean.prototype.toString ( )

This method performs the following steps when called:

  1. Let b be ? thisBooleanValue(this value).
  2. If b is true, return "true"; else return "false".

20.3.3.3 Boolean.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? thisBooleanValue(this value).

20.3.4 Properties of Boolean Instances

Boolean instances are ordinary objects that inherit properties from the Boolean prototype object. Boolean instances have a [[BooleanData]] internal slot. The [[BooleanData]] internal slot is the Boolean value represented by this Boolean object.

20.4 Symbol Objects

20.4.1 The Symbol Constructor

The Symbol constructor:

  • is %Symbol%.
  • is the initial value of the "Symbol" property of the global object.
  • returns a new Symbol value when called as a function.
  • is not intended to be used with the new operator.
  • is not intended to be subclassed.
  • may be used as the value of an extends clause of a class definition but a super call to it will cause an exception.

20.4.1.1 Symbol ( [ description ] )

This function performs the following steps when called:

  1. If NewTarget is not undefined, throw a TypeError exception.
  2. If description is undefined, let descString be undefined.
  3. Else, let descString be ? ToString(description).
  4. Return a new Symbol whose [[Description]] is descString.

20.4.2 Properties of the Symbol Constructor

The Symbol constructor:

  • has a [[Prototype]] internal slot whose value is %Function.prototype%.
  • has the following properties:

20.4.2.1 Symbol.asyncIterator

The initial value of Symbol.asyncIterator is the well known symbol @@asyncIterator (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.2 Symbol.for ( key )

This function performs the following steps when called:

  1. Let stringKey be ? ToString(key).
  2. For each element e of the GlobalSymbolRegistry List, do
    1. If SameValue(e.[[Key]], stringKey) is true, return e.[[Symbol]].
  3. Assert: GlobalSymbolRegistry does not currently contain an entry for stringKey.
  4. Let newSymbol be a new Symbol whose [[Description]] is stringKey.
  5. Append the Record { [[Key]]: stringKey, [[Symbol]]: newSymbol } to the GlobalSymbolRegistry List.
  6. Return newSymbol.

The GlobalSymbolRegistry is an append-only List that is globally available. It is shared by all realms. Prior to the evaluation of any ECMAScript code, it is initialized as a new empty List. Elements of the GlobalSymbolRegistry are Records with the structure defined in Table 59.

Table 59: GlobalSymbolRegistry Record Fields
Field Name Value Usage
[[Key]] a String A string key used to globally identify a Symbol.
[[Symbol]] a Symbol A symbol that can be retrieved from any realm.

20.4.2.3 Symbol.hasInstance

The initial value of Symbol.hasInstance is the well-known symbol @@hasInstance (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.4 Symbol.isConcatSpreadable

The initial value of Symbol.isConcatSpreadable is the well-known symbol @@isConcatSpreadable (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.5 Symbol.iterator

The initial value of Symbol.iterator is the well-known symbol @@iterator (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.6 Symbol.keyFor ( sym )

This function performs the following steps when called:

  1. If sym is not a Symbol, throw a TypeError exception.
  2. Return KeyForSymbol(sym).

20.4.2.7 Symbol.match

The initial value of Symbol.match is the well-known symbol @@match (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.8 Symbol.matchAll

The initial value of Symbol.matchAll is the well-known symbol @@matchAll (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.9 Symbol.prototype

The initial value of Symbol.prototype is the Symbol prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.10 Symbol.replace

The initial value of Symbol.replace is the well-known symbol @@replace (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.11 Symbol.search

The initial value of Symbol.search is the well-known symbol @@search (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.12 Symbol.species

The initial value of Symbol.species is the well-known symbol @@species (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.13 Symbol.split

The initial value of Symbol.split is the well-known symbol @@split (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.14 Symbol.toPrimitive

The initial value of Symbol.toPrimitive is the well-known symbol @@toPrimitive (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.15 Symbol.toStringTag

The initial value of Symbol.toStringTag is the well-known symbol @@toStringTag (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.2.16 Symbol.unscopables

The initial value of Symbol.unscopables is the well-known symbol @@unscopables (Table 1).

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.4.3 Properties of the Symbol Prototype Object

The Symbol prototype object:

The abstract operation thisSymbolValue takes argument value. It performs the following steps when called:

  1. If value is a Symbol, return value.
  2. If value is an Object and value has a [[SymbolData]] internal slot, then
    1. Let s be value.[[SymbolData]].
    2. Assert: s is a Symbol.
    3. Return s.
  3. Throw a TypeError exception.

20.4.3.1 Symbol.prototype.constructor

The initial value of Symbol.prototype.constructor is %Symbol%.

20.4.3.2 get Symbol.prototype.description

Symbol.prototype.description is an accessor property whose set accessor function is undefined. Its get accessor function performs the following steps when called:

  1. Let s be the this value.
  2. Let sym be ? thisSymbolValue(s).
  3. Return sym.[[Description]].

20.4.3.3 Symbol.prototype.toString ( )

This method performs the following steps when called:

  1. Let sym be ? thisSymbolValue(this value).
  2. Return SymbolDescriptiveString(sym).

20.4.3.3.1 SymbolDescriptiveString ( sym )

The abstract operation SymbolDescriptiveString takes argument sym (a Symbol) and returns a String. It performs the following steps when called:

  1. Let desc be sym's [[Description]] value.
  2. If desc is undefined, set desc to the empty String.
  3. Assert: desc is a String.
  4. Return the string-concatenation of "Symbol(", desc, and ")".

20.4.3.4 Symbol.prototype.valueOf ( )

This method performs the following steps when called:

  1. Return ? thisSymbolValue(this value).

20.4.3.5 Symbol.prototype [ @@toPrimitive ] ( hint )

This method is called by ECMAScript language operators to convert a Symbol object to a primitive value.

It performs the following steps when called:

  1. Return ? thisSymbolValue(this value).
Note

The argument is ignored.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

The value of the "name" property of this method is "[Symbol.toPrimitive]".

20.4.3.6 Symbol.prototype [ @@toStringTag ]

The initial value of the @@toStringTag property is the String value "Symbol".

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: true }.

20.4.4 Properties of Symbol Instances

Symbol instances are ordinary objects that inherit properties from the Symbol prototype object. Symbol instances have a [[SymbolData]] internal slot. The [[SymbolData]] internal slot is the Symbol value represented by this Symbol object.

20.4.5 Abstract Operations for Symbols

20.4.5.1 KeyForSymbol ( sym )

The abstract operation KeyForSymbol takes argument sym (a Symbol) and returns a String or undefined. If sym is in the GlobalSymbolRegistry (see 20.4.2.2) the String used to register sym will be returned. It performs the following steps when called:

  1. For each element e of the GlobalSymbolRegistry List, do
    1. If SameValue(e.[[Symbol]], sym) is true, return e.[[Key]].
  2. Assert: GlobalSymbolRegistry does not currently contain an entry for sym.
  3. Return undefined.

20.5 Error Objects

Instances of Error objects are thrown as exceptions when runtime errors occur. The Error objects may also serve as base objects for user-defined exception classes.

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of the NativeError objects defined in 20.5.5 or a new instance of AggregateError object defined in 20.5.7. Each of these objects has the structure described below, differing only in the name used as the constructor name instead of NativeError, in the "name" property of the prototype object, in the implementation-defined "message" property of the prototype object, and in the presence of the %AggregateError%-specific "errors" property.

20.5.1 The Error Constructor

The Error constructor:

  • is %Error%.
  • is the initial value of the "Error" property of the global object.
  • creates and initializes a new Error object when called as a function rather than as a constructor. Thus the function call Error(…) is equivalent to the object creation expression new Error(…) with the same arguments.
  • may be used as the value of an extends clause of a class definition. Subclass constructors that intend to inherit the specified Error behaviour must include a super call to the Error constructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

20.5.1.1 Error ( message [ , options ] )

This function performs the following steps when called:

  1. If NewTarget is undefined, let newTarget be the active function object; else let newTarget be NewTarget.
  2. Let O be ? OrdinaryCreateFromConstructor(newTarget, "%Error.prototype%", « [[ErrorData]] »).
  3. If message is not undefined, then
    1. Let msg be ? ToString(message).
    2. Perform CreateNonEnumerableDataPropertyOrThrow(O, "message", msg).
  4. Perform ? InstallErrorCause(O, options).
  5. Return O.

20.5.2 Properties of the Error Constructor

The Error constructor:

  • has a [[Prototype]] internal slot whose value is %Function.prototype%.
  • has the following properties:

20.5.2.1 Error.prototype

The initial value of Error.prototype is the Error prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.5.3 Properties of the Error Prototype Object

The Error prototype object:

  • is %Error.prototype%.
  • is an ordinary object.
  • is not an Error instance and does not have an [[ErrorData]] internal slot.
  • has a [[Prototype]] internal slot whose value is %Object.prototype%.

20.5.3.1 Error.prototype.constructor

The initial value of Error.prototype.constructor is %Error%.

20.5.3.2 Error.prototype.message

The initial value of Error.prototype.message is the empty String.

20.5.3.3 Error.prototype.name

The initial value of Error.prototype.name is "Error".

20.5.3.4 Error.prototype.toString ( )

This method performs the following steps when called:

  1. Let O be the this value.
  2. If O is not an Object, throw a TypeError exception.
  3. Let name be ? Get(O, "name").
  4. If name is undefined, set name to "Error"; otherwise set name to ? ToString(name).
  5. Let msg be ? Get(O, "message").
  6. If msg is undefined, set msg to the empty String; otherwise set msg to ? ToString(msg).
  7. If name is the empty String, return msg.
  8. If msg is the empty String, return name.
  9. Return the string-concatenation of name, the code unit 0x003A (COLON), the code unit 0x0020 (SPACE), and msg.

20.5.4 Properties of Error Instances

Error instances are ordinary objects that inherit properties from the Error prototype object and have an [[ErrorData]] internal slot whose value is undefined. The only specified uses of [[ErrorData]] is to identify Error, AggregateError, and NativeError instances as Error objects within Object.prototype.toString.

20.5.5 Native Error Types Used in This Standard

A new instance of one of the NativeError objects below or of the AggregateError object is thrown when a runtime error is detected. All NativeError objects share the same structure, as described in 20.5.6.

20.5.5.1 EvalError

The EvalError constructor is %EvalError%.

This exception is not currently used within this specification. This object remains for compatibility with previous editions of this specification.

20.5.5.2 RangeError

The RangeError constructor is %RangeError%.

Indicates a value that is not in the set or range of allowable values.

20.5.5.3 ReferenceError

The ReferenceError constructor is %ReferenceError%.

Indicate that an invalid reference has been detected.

20.5.5.4 SyntaxError

The SyntaxError constructor is %SyntaxError%.

Indicates that a parsing error has occurred.

20.5.5.5 TypeError

The TypeError constructor is %TypeError%.

TypeError is used to indicate an unsuccessful operation when none of the other NativeError objects are an appropriate indication of the failure cause.

20.5.5.6 URIError

The URIError constructor is %URIError%.

Indicates that one of the global URI handling functions was used in a way that is incompatible with its definition.

20.5.6 NativeError Object Structure

When an ECMAScript implementation detects a runtime error, it throws a new instance of one of the NativeError objects defined in 20.5.5. Each of these objects has the structure described below, differing only in the name used as the constructor name instead of NativeError, in the "name" property of the prototype object, and in the implementation-defined "message" property of the prototype object.

For each error object, references to NativeError in the definition should be replaced with the appropriate error object name from 20.5.5.

20.5.6.1 The NativeError Constructors

Each NativeError constructor:

  • creates and initializes a new NativeError object when called as a function rather than as a constructor. A call of the object as a function is equivalent to calling it as a constructor with the same arguments. Thus the function call NativeError(…) is equivalent to the object creation expression new NativeError(…) with the same arguments.
  • may be used as the value of an extends clause of a class definition. Subclass constructors that intend to inherit the specified NativeError behaviour must include a super call to the NativeError constructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

20.5.6.1.1 NativeError ( message [ , options ] )

Each NativeError function performs the following steps when called:

  1. If NewTarget is undefined, let newTarget be the active function object; else let newTarget be NewTarget.
  2. Let O be ? OrdinaryCreateFromConstructor(newTarget, "%NativeError.prototype%", « [[ErrorData]] »).
  3. If message is not undefined, then
    1. Let msg be ? ToString(message).
    2. Perform CreateNonEnumerableDataPropertyOrThrow(O, "message", msg).
  4. Perform ? InstallErrorCause(O, options).
  5. Return O.

The actual value of the string passed in step 2 is either "%EvalError.prototype%", "%RangeError.prototype%", "%ReferenceError.prototype%", "%SyntaxError.prototype%", "%TypeError.prototype%", or "%URIError.prototype%" corresponding to which NativeError constructor is being defined.

20.5.6.2 Properties of the NativeError Constructors

Each NativeError constructor:

  • has a [[Prototype]] internal slot whose value is %Error%.
  • has a "name" property whose value is the String value "NativeError".
  • has the following properties:

20.5.6.2.1 NativeError.prototype

The initial value of NativeError.prototype is a NativeError prototype object (20.5.6.3). Each NativeError constructor has a distinct prototype object.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.5.6.3 Properties of the NativeError Prototype Objects

Each NativeError prototype object:

  • is an ordinary object.
  • is not an Error instance and does not have an [[ErrorData]] internal slot.
  • has a [[Prototype]] internal slot whose value is %Error.prototype%.

20.5.6.3.1 NativeError.prototype.constructor

The initial value of the "constructor" property of the prototype for a given NativeError constructor is the corresponding intrinsic object %NativeError% (20.5.6.1).

20.5.6.3.2 NativeError.prototype.message

The initial value of the "message" property of the prototype for a given NativeError constructor is the empty String.

20.5.6.3.3 NativeError.prototype.name

The initial value of the "name" property of the prototype for a given NativeError constructor is the String value consisting of the name of the constructor (the name used instead of NativeError).

20.5.6.4 Properties of NativeError Instances

NativeError instances are ordinary objects that inherit properties from their NativeError prototype object and have an [[ErrorData]] internal slot whose value is undefined. The only specified use of [[ErrorData]] is by Object.prototype.toString (20.1.3.6) to identify Error, AggregateError, or NativeError instances.

20.5.7 AggregateError Objects

20.5.7.1 The AggregateError Constructor

The AggregateError constructor:

  • is %AggregateError%.
  • is the initial value of the "AggregateError" property of the global object.
  • creates and initializes a new AggregateError object when called as a function rather than as a constructor. Thus the function call AggregateError(…) is equivalent to the object creation expression new AggregateError(…) with the same arguments.
  • may be used as the value of an extends clause of a class definition. Subclass constructors that intend to inherit the specified AggregateError behaviour must include a super call to the AggregateError constructor to create and initialize subclass instances with an [[ErrorData]] internal slot.

20.5.7.1.1 AggregateError ( errors, message [ , options ] )

This function performs the following steps when called:

  1. If NewTarget is undefined, let newTarget be the active function object; else let newTarget be NewTarget.
  2. Let O be ? OrdinaryCreateFromConstructor(newTarget, "%AggregateError.prototype%", « [[ErrorData]] »).
  3. If message is not undefined, then
    1. Let msg be ? ToString(message).
    2. Perform CreateNonEnumerableDataPropertyOrThrow(O, "message", msg).
  4. Perform ? InstallErrorCause(O, options).
  5. Let errorsList be ? IteratorToList(? GetIterator(errors, sync)).
  6. Perform ! DefinePropertyOrThrow(O, "errors", PropertyDescriptor { [[Configurable]]: true, [[Enumerable]]: false, [[Writable]]: true, [[Value]]: CreateArrayFromList(errorsList) }).
  7. Return O.

20.5.7.2 Properties of the AggregateError Constructor

The AggregateError constructor:

  • has a [[Prototype]] internal slot whose value is %Error%.
  • has the following properties:

20.5.7.2.1 AggregateError.prototype

The initial value of AggregateError.prototype is %AggregateError.prototype%.

This property has the attributes { [[Writable]]: false, [[Enumerable]]: false, [[Configurable]]: false }.

20.5.7.3 Properties of the AggregateError Prototype Object

The AggregateError prototype object:

  • is %AggregateError.prototype%.
  • is an ordinary object.
  • is not an Error instance or an AggregateError instance and does not have an [[ErrorData]] internal slot.
  • has a [[Prototype]] internal slot whose value is %Error.prototype%.

20.5.7.3.1 AggregateError.prototype.constructor

The initial value of AggregateError.prototype.constructor is %AggregateError%.

20.5.7.3.2 AggregateError.prototype.message

The initial value of AggregateError.prototype.message is the empty String.

20.5.7.3.3 AggregateError.prototype.name

The initial value of AggregateError.prototype.name is "AggregateError".

20.5.7.4 Properties of AggregateError Instances

AggregateError instances are ordinary objects that inherit properties from their AggregateError prototype object and have an [[ErrorData]] internal slot whose value is undefined. The only specified use of [[ErrorData]] is by Object.prototype.toString (20.1.3.6) to identify Error, AggregateError, or NativeError instances.

20.5.8 Abstract Operations for Error Objects

20.5.8.1 InstallErrorCause ( O, options )

The abstract operation InstallErrorCause takes arguments O (an Object) and options (an ECMAScript language value) and returns either a normal completion containing unused or a throw completion. It is used to create a "cause" property on O when a "cause" property is present on options. It performs the following steps when called:

  1. If options is an Object and ? HasProperty(options, "cause") is true, then
    1. Let cause be ? Get(options, "cause").
    2. Perform CreateNonEnumerableDataPropertyOrThrow(O, "cause", cause).
  2. Return unused.